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t) We have gathered protocols of subjects in their first 30 hours of lcarning LISP. The processes by which
subjects write LISP functions to meet problem specifications has been modeled in a simulation program
called GRAPES(Goal Restricted Production System). The GRAPES swxglg@ies the goal-restricted
architecture for production systems as specified in the AC"{‘ * thcory“QAndcrson. 1983).\ We compare our
simulation to human protocols on a number of problems. GiIAPES simulates the top-down, depth-first flow
of control exhibited by subjects and produces code very similar to subject code. Special attention is given to
modeling student solutions by analogy, how students learn from doing, and how failures of working memory

affect the course of problem solving. Of major concern is the process by which GRAPES compiles operators

in solving one problem to facilitate the solution of later problems.
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Introduction

There are 2 number of reasons for being interested in how people learn to program. For one thing, it is
an excellent example of the acquisition of a complex cognitive skill. It gets to the heart of many of the deep
epistemological issues that haunt cognitive science. Particularly in the case of a language like LISP and in the
case of subjects with no prior computer experience, we are looking at skill acquisition with relatively little
relevant prior knowledge. It is almost as close to a situation of a tabula rasa as we are going to find in-an
adult Also, in contrast to domains like natural language or perhaps even mathematics, it is extremely
implausible to argue that we have evolved a special faculty for this skill (e.g., Chomsky, 1980). In studying the
acquisition of programming skills, we are looking at an instance of learning by general-purpose mechanisms.
Despite the relative paucity of prior knowledge and prior specialization, people can become quite proficient

programmers. So the domain offers a testimony to the power of these general-purpose learning mechanisms.

Two of our three subjects also had no prior programming cxperience.' Thus, we are looking at a
particularly pure casc of novel learning. However, the behavior we observe in LISP also shows up in learning

other skills like geometry and physics and we feel our theoretical conclusions do generalize to other domains.

It is also the case that learning to program is going to be an increasingly important goal in our society.
Thus, understanding its acquisition will have enormmous educational impact. The issue of training novel,
complex, and technical skills is a major oné for our "high-tech” society with its need to retrain a large fraction
of the work force. This retraining will not always be in programming, but in studying programming we are

addressing issues important to many technical skills.

This paper reports research relevant to four major issucs—how the problem solving involved in
programming is organized, how the knowledge given in instruction is initially used to guide programming,
how this knowledge becomes compiled so it can apply smoothly, and how working memory capacity limits
the ability to program. While these are interesting questions in their own right, we are particularly interested

in these questions because they are key to the ACT# theory of acquisition of cognitive skills (Anderson, 1982,

1983). Consonant with ACT# we will argue for four major conclusions:




..............................

(1) The problem-solving is organized hierarchically according to a set of goals and subgoals.

(2) The problem solving is largely guided at first by structural analogy to concrete cases.

(3) The ACTs processes of composition and proceduralization convert this knowledge into procedures

specific to programming.

(4) Working memory impacts on behavior by affecting the probability of successfully executing the

analogy and programming procedures.
The Data Base

We have looked extensively at the first 30 hours of novice programming behavior of three subjects (SS,
WC, and BR). SS was an undcrgraduate.with no prior programming experience, BR was a psychology B‘A
also without any programming cxperience, WC was a college professor with some FORTRAN experience. In
these protocols, subjects studied a text on LISP—SS studied Siklossy (1976), WC studied Winston (1977), and
BR studicd Winston & Horn (1981). We recorded their verbal protocols, kept their paperwork, and kept a
record of their terminal interactions. The individual sessions varied from 45 minutes to two and a half hours,
depending on what seemed to be natural units and natural breaking points. Approximately one quarter of the
session time was spent reading and discussing the text; the other three-quarters of the time was spent doing
various exercises. The subjects worked with an experimcmer who tried to do as little teaching as possibie and
let the student learn from the text. The main rcsponsibility of the experimenter was to query the subjects
about what they were thinking, v\./hy they tried various solutions, etc. However, if the subject had a serious

misunderstanding or was lost in problem, the experimenter would intervene with tutorial assistance.

We feel that we have a good record of the learning that was occurring in these sessions. Subjects were
instructed not to think about LISP when they were not in the experimental session. They were also not

permitted to keep the textbook between sessions.

While the 30 hour protocols from these subjects has been the major source of data for theory

construction, we have also looked at protocols from these subjects much later, after they had continued their

.....................
.............................
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LISP education; we lookcd at protocols from relatively advanced LISP programmers. In addition, we have

i beconlhs i

assigned various learning problems to a large class learning LISP. While we cannot get any information about

a—

the rcal-time problem-solving from the class, the data does provide information about the distribution of final

>l

_..' solutions. This provides one basis for judging the representativeness of the solutions we see from our three
subjects. |
The GRAPES Simulation )
r We developed GRAPES (Goal-Restricted Production System) to model how subjects write LISP :
a functions® and how subjects learn from their problem-solving episodes. GRAPES is a simulation of certain

-
l
-

aspects of the ACT» theory and as such takes the form of a production system. Each production in GRAPES
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has a condition which specifies a particular programming goal and various problem specifications. The action
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of the production can be to embellish the problem specification, to write or change LISP code, or to set new

subgoals. A representative example of a production3 that a pre-novice might have:

R1: IF the goal is to write a structure
) and there is a template for writing the structure
X THEN set a goal to map that template to the current case.

¥ R1 might be invoked in a non-programming context such as when one uses another person’s income tax form

)‘..:)".

»
LS

as a template to guide how to fill out his own. Productions like R1 serve as a basis for subjects’ initial

performance in LISP. A production that a novice might have after a few hours of learning is:

R2: IF the goal is 10 add Listl and List2
THEN write (APPEND Listl List2)

ol Aot elngt

N This production recognizes the applicability of the basic LISP function. With experience, subjects become .
> ’ more and more discriminate about when to apply LISP functions and more articulate about how to apply i
;: functions. A rule that an expert might have is:

.ﬂ 0

R3: IF the goal is to check that a recursive call to a function will
terminate and the recursive call is in the context of a MAP function

THEN sct as a subgoal to establish that the list provided to the MAP '1
& function will always become NIL after some number of recursive calls 4
K
N k
N A
; All programs in LISP take the form of functions that calculate various input-output relations. These 4
+ A) ' b
’ . . 1
r functions can call other functions or themselves recursively. A programming problem is solved in GRAPES

L 4
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by decomposing an initial goal of writing a function into subgoals and dividing these subgoals into others,
etc., until goals are reached which correspond to things which can be directly written. The composition of
goals into subgoals constitutes the AND-level of a goal tree; alternative ways of decomposing a goal constitute
the OR level of the goal tree. The dctails of the GRAPES production system are described in Sauers and

. Farrell (1982). The architecture differs from other production systems (e.g. Anderson, 1976; Newell, 1973),

o

primarily in the way it treats goals. At any point in time there is a single goal being focused upon and only

: productions relevant to that goal may apply. In this feature, GRAPES is like ACT#* (Anderson, 1983) and é;‘
F other recent theories (Card, Moran & Newell, 1983; Brown and Van Lehn, 1980). More generally, it is the J’
)

case that GRAPES has a subset of the features contained in ACT» 2

The Transition to Behavior: The FIRST Problem

One of our consistent obscrvations from the protocols is that subjects are not able to read instructions,

. of even modest complexity, and then generate, without error, the behavior instructed. This is not surprising

given the ACT' theory. According to that theory, instructions are stored initially in a declarative form while

behavior requires procedures which are represented as productions. Instructions cannot directly set up
procedures to perform the skill. To get behavior, general interpretive productions must convert this
knowledge into behavior. Many of the problems arise because of the indirection through these interpretive

productions.

One of the problem-solving episodcs of BR is typical of the difficulties people have in making the

transition from instruction to experience. She had read the instruction on pages 33-37 of Winston and Hom

-3
on function definition and had tumned to the first problem on page 37 to define the function FIRST which o

returned the first element of a list.

She extracted virtually nothing from the text instruction. What she did extract was a template for how

to write a function definition:
(DEFUN <function name> k

-, (<parameter 1> {paramecter 2>...{parameter n>) 1

; {process description)

Winston and Horn asscrt "angle brackets delincate descriptions of things™. She also studied three examples
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of function definitions to which she referred while trying to write the function FIRST. One of these functions

converted fahrenheit to centigrade:

(DEFUN F-TO-C (TEMP)
(QUOTIENT (DIFFERENCE TEMP 32) 1.8))

The second cxchanged the first two members of a list;

(DEFUN EXCHANGE (PAIR)
(LIST (CADR PAIR) (CAR PAIR)))

The third returned the percentage by which the second argument is larger than the first:

(DEFUN INCREASE (X.Y)
(QUOTIENT (TIMES 100.0 (DIFFERENCE Y X))X))

These are all referred to in BR’s protocol which is given in Appendix A.

The one other relevant thing BR knew was the function CAR and how to use it when interacting with
the monitor in LISP. CAR returns the first element of the list which is its argument. She knew, for instance,
if she types (CAR ‘(A B C)), the monitor would return the answer A. Thus, this problem is really an exercise

in using the syntax of function definition rather than an exercise in defining a novel function.

FIRST: The Protocol

Because raw protocols such as Appﬁndix A are very complex and full of irrelevant detail, we have taken
to simulating what we call protocol schematics. These are our intuitive characterizations of the essential
features of the protocol, omitting maﬁy of the digressions. Table 1 provides a schematic protocol for the

complete protocol given in Appendix A.

-------------------

Insert Table 1 abo{xt here

There are two features of this protocol which are striking at the surface. First, as already noted, the
subject makes very little use of the written instruction. She relics on the template for a LISP definition and
the concrete examples. We usc the term structural analogy to refer to the process by which subjects map such

structures into new function definitions.

Sccond, at the end of the protocol, BR defined a function, SECOND, that returns the sccond clement of

a list. The striking feature of this cpisode is how much more rapidly the subject writes the definition for

------
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SECOND than for FIRST. The subject does not have to resort to structural analogy and does not have
difficulty with either feature that caused problems for FIRST — the specification of the parameter list or the
specification of the LIST1 argument within the process specification. The only thing that is causing the
subject any difficulty in SECOND is in deciding how to compose the primitive LISP functions CAR and
CDR togethcr‘. The single experience with FIRST seems sufficient for her to compile rules about how to

deal with many aspects of the syntax of function definition.

FIRST: The Simulation

We éreatcd a production system in GRAPES that would simulate this protocol. The only productions
we required for this simulation were ones to do structural analogy and ones that could use the LISP functions
CAR and CDR at the top level. The first type of productions represent a general prior skill evoked in many
contexts (for instance, in filling cut income tax forms). The second type was acquired from work with earlier

chapters in Winston and Horn.

Figure 1 illustrates the goal tree gcﬁcratcd in simulating this example. Each box in Figure 1 represents a
goal and cach arrow emanating from the box represents a GRAPES production trying to achieve the goal. If
the production has subgoals, it is connected to goal boxes below. The simulation starts with the goal of
writing the function and chooses as its method 10 usc the template for function definition as a2 model. We
refer to this as mapping the template. The‘st.ructural analogy productions respond to the goal of mapping the
template by mapping the components DEFUN and <function name> in the template. These productions
wrote out "(DEFUN FIRST” without difficulty. This gets us through line 3 of the schematic protocol in

Table 1.

Like our subject, GRAPES was not able to directly write out the parameter part of the function
template because GRAPES did not know what a parameter was. In cases like this. GRAPES' analogy
productions will rusort 1o a co crete example. The concrete example retrieved by GRAPES is the definition

of F-TO-C given -ui» I, . i¢ subject in lines S and 6 reviews two examples in Winston and Horn—F-TO-C
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and EXCHANGE. In both cases she notes the single argument which was the parameter. GRAPES solved
the analogy: X is to F-TO-C as the parameter list (i.e., (Cparameter 1><{parameter 2>...{parameter n>)) is to
the abstract template, and retrieved (TEMP) as the value for X. Thus, it decided (TEMP) was serving the
parameter role in F-TO-C. Then it solved the analogy X is to FIRST as (TEMP) is to F-TO-C and ]
determined the value for X was (LIST1) which it put into the function definition. That is, GRAPES decided
(LIST1) served the same role in the function it was defining that (TEMP) was serving in F-TO-C. We infer

that this is what the subject was doing in line 7 of the schematic protocol.

Then GRAPES turned to trying to map <process specification> from the tcmplate. Being unable to
directly interpret what is meant by <process specification>, it looked to its concrete example F-TO-C to see -
that the LISP code which filled this slot performed the function operations. By analogy, GRAPES set iis goal
to write code that would perform the operations required by FIRST. The subject at this point (line 8) looked
to a different example, INCREASE: for the same purpose of analogy. A GRAPES production for using CAR
at the top level applicd next (corresponding to line 9 of the protocol), but there was no producticn to specify
how to write the argument to the CAR in the context of defining a function. GRAPES and the subject know [
that CAR will operate on LISTI, but they do not know the syntax for specifying LISTl. GRAPES again
turns to its concrete example, F-TO-C and solves the analogy (CAR ARGQG) is to (QUOTIENT X) and
retricves (DIFFERENCE TEMP 32) as the value of X which is the first argument to QUOTIENT. It then |
solves the analogy problem of what it rﬁust do o LIST1 to make it like (DIFFERENCE TEMP 32) and
decides it should embed LIST]1 in parentheses. Similar to GRAPES, the subject on line 10 looks at a function

EXCHANGE which has the same argument structure as F-TO-C. We assume she n.:kes the same erroneous

TP TP

analogy because she writes (LIST1) on line 11. The first argument to QUOTIENT in F-TO-C is embedded in
parentheses (as is the first argument to LIST in EXCHANGE) because a function, DIFFERENCE, must be
called to calculate the argument for QUOTIENT whercas no embedded function call is required for the

argument to CAR in the FIRST example.

Sladetendendende b A bt obech

There are two things to note at this point. First, the subject had read the information in the text that

could have informed her to write LIST1 without parentheses, but this had no impact on her behavior.

....................
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Second, on previous occasions she had correctly specified variable arguments when evaluating functions at
the top-level. Eventually, the tutor used this second fact, that the subject could do it correctly at the top level,
to guide the subject to a correct solution. Both of these observations illustrate the relative isolation of

knowledge. That is, knowledge studied or used in one context is not available in another context.

When the subject tries her function definition, an error is gencrated (line 14). GRAPES received the
same error message when it tried out the same function definition that it generated. The error occurred
because LISP treats the first thing inside a parenthesized expression to be evaluated as a function and there is
no function corresponding to LIST1. GRAPES associated this error with the failure to correctly specify the
argument to CAR. On previous occasions BR had encountered the same error at the top level typing in
commands like (CAR (A)) where the argument (A),to CAR is to be taken literally rather than evaluated.
Always in the past she had repaired these errors by quoting the argument. This is done by preceding the
argument with a single quote, i.e. (CAR *(A)). We assume that both the subject and GRAPES have compiled
from previous expcrience a rule that the way to repress this error is by using quote, which stops LISP from
evaluating. Thus, both GRAPES and the subject generate the new function definition as it is given in line 15

of Table 1.

When this new function is tried on an example, LISP returns the CAR of '(LIST1) which is
LIST1 - rather than the first element of the value of LIST1. It is at this point (lines 16 and 17) that the tutor
intervenes and reminds the subject of how she would solve the problem at the top level. At the top level, the
student would have used (CAR LIST1) rather than (CAR (LIST1)) or (CAR(LIST1)). We simulated this
intervention in GRAPES by refocusing it to the code-first-relationship goal in Figure 1, and putting (CAR
LIST1) as a top-level example in working memory. Then GRAPES, as the subject, maps this code to its

current function definition and comes up with the correct code.
FIRST: Knowledge Compilation
After finally solving this problem, GRAPES formed two operators which aided its solution of the

second problem. Thesc operators summarized much of the problem solving that took place.

Pl IF the goal is to write a function of one variable
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THEN write (DEFUN function (variable)
and set as a subgoal to code the relation calculated by
this function
and then write ).

P2: IF the goal is to code an argument
and that argument corresponds to a variable of the function
THEN write the variable name.

We have encircled in Figure 1 the portions of the goal trec that are summarized by each of these productions.
The first production capturcs the top level syntax of a function call while the second summarized the search
involved in finding out how to specify a variable argument to a function. With these productions, GRAPES

was able to write the function SECOND much easier, as was the subject.

We use knowledge compilation to refer to the process by which GRAPES forms such productions. Later
in this paper we will describe the mechanisms underlying compilation in some detail; however, the examples
above illustrate two important properties of compilation. First, in forming Pl it must be able to recognize
which aspects cf the process are variable and must be left as open subgoals. In forming P2, it must be able to
recognize which parts of the goal tree were incorrect paths and which parts were critical to the final solution.
FIRST: Conclusions

There are a number of conclusions that we draw from BR’s protocol and the GRAPES simulation. The
first is the importance of structural analogy to bridging the gap between current knowledge and the needed
behavior. We see two sources for the structure from which the analogy is being made. One is templates
provided in the text and worked-out problems. The other is structures that the subject can generate — for
instance, the subject gencrated (CAR LIST1) as a top-level solution and then used this in her function

definition.

Bott (1978) and Rumeclhart & Norman(1981) have also stressed the importance of analogy in early
learning. In their situation, subjects were using analogy to extra-domain experiences. One feature of LISP is
that there are very few rclevant analogies to other domains. Therefore, the analogy process must use

examples from within LISP,
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A second conclusion concerns the hierarchical structure of the problem-solving episode as illustrated in

Figure 1. Note that the goals in this tree are expanded depth-first, left-to-right (this mode of expansion is ;j

clearer in the next examples which involve "bushier™ goal trees). Jeffries, Turner, Atwood and Polson (1981)

also note this hierarchical, top-down, structure in the programming bchavior of experts—although their

. subjects use breadth-first expansion in correspondence with the edicts of structured programming. ;:
4

The third conclusion is the importance of knowledge compilation in extracting new production rules

from an example problem. These rules streamline the solution of later problems. As the protocol shows, the
learning can be on the basis of a single example. It nceds to be stressed that the lessons of this example
“stuck” which is to say, BR did not have, on later days, the same difficulty with the basic syntax of function
definition nor argument specification. It should also be stressed that compilation depends critically on the
structure of the goal tree being compiled.6 That is, the structure of the goal tree identifies what parts of the

problem-solving episode belong together and what can be coilapsed into a singlé rule,

In these three features—structural analogy, hierarchical goal trees, and knowledge compilation—we
have one complete solution to the issue of how the subject is able to make the transition to a new cognitive

behavior. As such, they constitute a major conclusion of this paper.

Dealing With Gaps in Knowledge: The ONETWO Problem

We will provide a sccond example to help reinforce the conclusions from the first. This comes from the

subject, SS, who was slightly more advanced at this point in her protocol. She had written the functions

P IR
latale’,y gls

FIRST, SECOND, and THIRD. Thus, she had already learned the basics of function definition. She was -

LT
then given a problem, ONETWO, that exposed some of the gaps in her knowledge. Thus, in this protocol, we :»f
will sce how a subject deals with gaps in an existing procedure. This protocol is considerably more elaborate '.l.
than the first. Whercas BR’s protocol spanned a little' less than half an hour, this protocol spanned about an g

( }

hour. Rather than presenting it in its entirety, we have simply provided the protocol schematics in Table 2.
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The ONETWO problem required the subject to write a function which would ke a list as an argument
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and return a new list consisting of the first two elements of the argument list—c.g., (ONETWO (A BC)) =
(A B). The LISP functions that the subject knew at this time included CbNS but the subject had not yet
learned about LIST. CONS takes two arguments and inserts its first argument in the list that is its second
argument, eg. (CONS 'A ’(B C)) = (A B C). Although SS had never uscd CONS in a function definition she

had a fair amount of expcrience with it at the top level of LISP when evaluating expressions such as the

example above. She also had experience with one slightly esoteric fact which proved critical to the solution of

the problem. If one used CONS with the sccond argument NIL, one puts the first argument in a list, eg.

(CONS "A NIL) = (A). This is because NIL is equivalent to an empty list, eg. NIL = ().

ONETWO: An Initial Attempt

i Initially, the subject could not think of a plan for defining ONETWO, so the experimenter suggested
: writing a simpler function, ADDTWO, which would take two arguments and make a list out of them. SS was
able to plan out a solution to ADDTWO much more easily. Itis interesting to speculate why ADDTWO was
'_‘.‘: more tractable than ONETWO. As we will see, the output specification and the basic solution did not change
in going from ONETWO 10 ADDTWO. However, by reducing the complexity of the task by one level, the
burden on the subject’s working memory was reduced enough so that she was able to match rule con&itions

more easily.

Figures 2 - 7 illustrate the simulation’s attempts to solve ONETWO. Given the close correspondence
betwecn the simulation and SS’s protocol, we infer that these figures also describe the goal structures that

were guiding her problem solutions.

Insert Figure 2 about here

Figure 2 illustrates the first work that was done on the ADDTWO subproblem. The first operator sets
the subgoals of coding the function and checking(testing) the code. Unable to code the solution directly,
GRAPES scts subgoals to come up with concrete examples of the input to ADDTWO and what its output
! should be, to find some code that could be used at the top level that would convert the concrete input into the

concrete output, to check this code, and then to map this code into an abstract function definition. The inputs
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SS chose to pass 10 ADDTWO were (A B) and (C D). Why she chose list arguments we are unsure. The
result she wanted for these inputs was ((A B) (C D)). We constrained the GRAPES simulation to choose the

same example.

' Figure 3 illustrates the simulation of the process by which she decided what top-level code would mimic
the performance of ADDTWO. After deciding on the example, she went through an episode where she
explicitly reviewed the definition of all the functions she knew, searching for an appropriate one. She selected
CONS, commenting that ADDTWO "is sort of like CONS except in CONS the first argument is any

! S-expression and the second argument is a list”. We represented the definition of CONS in GRAPES as

The first argument of CONS is any S-expression and the second argument is a list. Its result is a
" list. The first clement of the resulting list is the first argument. The rest of the result consists of
- the second argument.

She and GRAPES chose CONS because they wanted a list and CONS makes lists. Having selected CONS,

. 1S e —
o ———

the subgoals were now to determine what arguments to pass to CONS in order to get the intended result

e e

Insert Figure 3 about here

-

The critical picce of information in selecting the first argument is the definition statement The first

element of the result is the first argument. GRAPES interfaces this with the desired result, (A B) (C D)), to

a
dl et adnd e b

determine that the correct argument shouid be (A B). Next, SS and GRAPES tumn to the second argument.

The appropriate part of this definition is The rest of the result consists of the second argument. Matching this

)

-

would retrieve ((C D)) as the second argument. However, our subject retrieved (C D). We assume that the

LA AL

-

S -y )

semantic features of consists were partially lost and this statcment became The rest of the result contains the
second argument. We manipulated GRAPES' working memory so that it would produce this error.” The

subject and GRAPES mentally simulatcd what the outcome would be of the code (CONS ‘(A B) '(C D)).

I - a S PR

¢ ) This involved retrieving the definition of CONS again. As evidence that her definition of CONS was not in

error, she correctly determined that ((A B) C D) would result as an answer. On a few occasions in the past, SS

- had incorrectly used CONS at the top-level in just this way--having one less parenthesis around the second

argument. Therefore, we assume she had compiled a rule to repair this which embedded the second |
r
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argument to CONS in an extra list By applying this rule, she and GRAPES recover from their error and

make up the concrete example (CONS (A B) ((C D))).

To summarize, at this point the subject had actually created some LISP code which could be typed into
the top level of LISP and was going to use the structure of this code to guide the creation of an abstract LISP
function. This will be done by structural analogy or mapping. This mapping proceeds in basically the same

way as the mapping of the function definition template by subject BR.

ONETWO: The Mapping

Insert Figure 4 about here

Figure 4 illustrates the simulation of SS's initial attempt to map from the concrete code, (CONS '(A B)
(C D)), to an abstract LISP function definition. GRAPES starts in that figure with the goal MAP TO

ABSTRACT. First she maps CONS in the concrete code into CONS in the LISP function. At this point the

structure of the function is:3

(defun addiwo (one two)
(cons <D LY

The remaining task is to map the two concrete arguments into abstract arguments. She first focuses on
mapping (A B). The following rule, called MAP-FIND, applies:

IF the goal is to map an expression E into a domain D
and Econtainsaterm T
and T corresponds to a argument A in domain D
THEN replace Tin Eby A

So, in this case she is trying to map the expression (A B) to the domain of the function definition where the
argument ONE in the function definition corresponds to the ferm (A B)—in this case the term is the whole
expression. Therefore, after replacing the argument for the term, the expression becomes simply ONE. This
same rule applies to map the sccond concrete expressio.n ((C D). In this casc the argument TWO corresponds
to the ferm (C D) and the expression after substitution is (TWO). Note this rulc has mapped the first concrete
expression into a correct definition expression but has mapped the sccond concrete expression into an

incorrect definition expression. The function definition at this point is:

...................
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(defun addtwo (one two)

- (cons one (two))) ]
o J
a_ Insert Figure 5 about here *
: |
3 ;
I .
i Figure § illustrates some of the subsequent evolution of this definition. The coding of ADDTWO had 4
h the brother goal of checking that code. Both SS and GRAPES called the LISP interpreter to try the code with .l
5 ' the arguments (A B) and (C D)--i.e., both evaluated (ADDTWO '(A B) '(C D)). Both received the same error k
L message "TWO undefined function object.” This corresponds 1o an error that SS had encountcred a few i

times previously in her problem solving. In previous occasions, the cause had been failure to quote an

argument. Therefore, we assumed that she had compiled an operator that used quote to stop evaluation.

T W

When this operator applicd, her LISP codé became

{defun addtwo (one two)
(cons one ‘(two)))

L Again, she tried the code. This time it rcturned the result ((A B) TWO). Comparing this with her desired
result the problem was localized to the second argument given to CONS; she and GRAPES went back to

- retrying the goal of mapping ((C D)).

Insert Figure 6 about here

_:: Figure 6 illustrates the simulation of this mapping. Having returned to this goal, the previous MAP-
2 FIND operator will not apply again. Therefore, a default rule applics which creates a new subgoal of coding a

list consisting of a single argumem..lo As in the case of coding the full ADDTWO problem, GRAPES falls

w back on the plan of making up a concrete example, coding it, checking the code, and then mapping the code
into an abstract code for the function. The previous concrete example of ((C D)) is used. Again, CONS is

chosen because it makes lists and again its definition is used to determine the correct arguments. This time

-,j: the definition is correctly used and GRAPES plans the concrete code as (CONS (C D) NIL).

After checking this code, GRAPES turns to the goal of mapping the concrete code to the LISP function.

The process of performing this mapping is quite analogous to the original mapping in Figure 5. Again,
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CONS is mapped into CONS. The same MAP-FIND operator as before maps (C D) into TWO. An operator

for special LISP symbols, like NIL, maps NIL onto itself. So, the final successful code becomes:

(defun addiwo (one two)
(cons one (cons two nil)))

One interesting feature of this example is that SS is able to find her way eventually tc the correct
function without ever correcting the MAP-FIND opcrator, which will erroneously apply whenever it is given
a non-atomic data structure. Later protocols by SS indicated she still had the crroneous MAP-FIND
operator. An examination of buggy functions submitted by students given class exercises suggests that this is

a frequent bug among LISP novices.

ONETWO: Return to the Main Function
Figure 7 illustrates the behavior of the simulation and the subject when they returned to the original

ONETWO problem. The code they generated is given below:

{dcfun onctwo (list)
(cons (first list)
(cons (second list) nil)))

Whereas the subject had taken an hour to code ADDTWO, she only took ten minutes to solve ONETWO and
most of that time was spent confirming what the functions FIRST and SECOND did. ONETWO is solved by
the same method that ADDTWO is solved, but without any rehearsal of the ADDTWO method, nor any of

the use of examples that was such a large pant of the ADDTWO solution. Our assumption is that operators

were com ADDTWO problem that summarized the planning steps and these operators

facilitated solution of the ONETWO pr;)‘t-).len;.' TR~

e

.
-
e

Insert Figure 7 about here

One of the opcrators that GRAPES compiled summarizes the problem solution illustrated in Figure 6.
In creating the operator, GRAPES must distill those aspects critical to the solution. The goal in Figure 6 was
to create a list of a single clement and this was cventually achieved by the action of CONSing that element
with NIL. Most of the intermediate results in Figure 6 were not part of this final solution and can be deleted

in the compiled production. We will shortly discuss how compilation achiceves this. The summary operator
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built is:

IF the goal is to code a list consisting of one argument
THEN CONS that argument with NIL
and set as a subgoal to code that argument

Similarly, an operator is compiled to correspond to the outer CONS in the ADDTWO function. It has the

form:

IF the goal is to code a list consisting of argumentl and argument2
THEN CONS argument] into a list consisting of argument2
and set as subgoals to code argumentl
and to code a list consisting of argument2

Many other operators are compiled which are less useful. These other operators are not harmful, they are just

too large or too specific to apply in future situations.

ONETWO: Summary

This examination of ONETWO reinforces some of the conclusions from the first protocol and
simulation. Again we see the use of structural analogy. In this case the subject did not take her analog from
the text but rather generated a concrete example of LISP code at the top level that could serve as an analog.
Scco‘nd.. the hierarchical structure of the problem-solving is even clearer in this simulation because of its
greater complexity. Third, we see the importance of knowledge compilation in building new operators that
will summarize the lessons learned from one problem-solving episode. We sce one instance of an additional
phenomenon that will loom larger in the third and forthcoming simulation and protocol. This is the episode
where the subject temporarily forgot the definition of CONS. Such memory failures can become a dominant
feature of some problem-solving cpisodes.

| Further Discussion of Compilation

As discussed in Anderson (1982) there arc two components to compilation— proceduralization and
composition. Proceduralization refers to the creation of specific productions that eliminate retrieval of
information from long-term memory by building that information into the rule. Composition refers to Lfle
crcatipn of more cfficient productions that take the place of several productions. Both components were
involved when compiling the operators in the ONETWO example, but there are other circumstances where

the two might operate singly.
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Proceduralization

Proceduralization can be illustrated in its pure form by the following example: in GRAPES there is a
production that will retrieve function definitions from long-term memory and apply them:

IF the goal is to code a relation defined on an argument
and there is a LISP function that codes this relation
THEN use this function with the argument
and set as a subgoal to code the argument

In this production, relation and function are variables which allow the production to match different data.
The second line of the condition might match, for instance, “CAR codes the first member of a list” If this

rule is proceduralized to eliminate the retrieval of the CAR definition, it becomes

IF the goal is to code the first member of a list
THEN use CAR of the list
and sct as a subgoal to code the list

This is achieved by deleting the second clause in the first production that required long term memory
retrieval. In addition, the rest of the production is made specific to the relation first element and th function
CAR. Now a production has been created which can directly recognize the application of CAR. This will
result in a reduction in the amount of long-term memory information that needs to be maintained in working

memory.
Composition
As an example of pure composition, suppose one wanted to add the first member of Listl to List2.

Then the following two operators would apply in sequence:

IF the goal is to add an element to a list
THEN usc CONS on the element and the list
and sct as subgoals to code the element
and to code the list

IF the goal is code the first member of a list
THEN use CAR on the list
and set as a subgoal to code the list

The first rule above would apply binding an element to "the first member of List]" and a list to "List2". The
sccond production would apply binding a list to "Listl”. A simple case of composition would involve
combining these two productions together to produce

IF the goal is to add the first member of one list to another list
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THEN CONS the CAR of the first list to the second list
and sct as subgoals to code the first list
and to code the second list

Such composition would collapse repeated sequences of coding operations to create macro-operators. The
result would be a speed-up in coding. The technical issucs of how to combine productions together are fairly
straight forward and are discussed in Anderson (1983) and Neves & Anderson (1981). A major issue concerns
what productions to compose together. The above example s a fairly simple case of collapsing two levels of a
goal trec into one. However, in some cases such as when Figure 6 was collapsed into a single production
many produc_t.ions are collapsed. GRAPES determines what productions to collapse by inspecting the goal
tree. There are two types of goals for purposes of composition: inherent goals and planning goals. Inherent
goals are intrinsic parts of the programming task. For current purposes inherent goals are all variants of
writing code. The important feature of inherent goals is that, in achieving them, one achicves part of the
original task. On the other hand, planning goals produce results that are used 10 guide solution of the original
problem but the results themselves are not part of the final solution. In Figure 7 the inherent goals are

"CODE LIST OF ONE ELEMENT" and "CHECK TWOQ"; all the rest are planning goals.

Composition collapses productions in one of two ways. One way is to eliminate the planning goals that
are intermediate between two inherent goals. This is what happens in Figure 7. In doing this it is compiling
out the planning process and simply leaving in the products of that planning. The second possibility is
illustrated in the case above. Here it skips over the sctting of an intermediate inhcrent goal and so reduces the
number of inherent goals by one. In doing this it is basically creating macro operators somewhat similar to
STRIPS(Fikes & Niisson, 1971) This learning scheme requires that the learner be able to identify what

subgoals were essential to the problem solution and which are only intermediate to the final solution.

It neceds to be emphasized that neither proceduralization nor composition climinate the original
production rules from which they were built Rather the new compiled rules just serve as additional

supplemental rules to produce better performance in certain circumstances.

The cffect of the knowledge compilation process is to create a sct of productions that mirror the

P . P ,;_._J
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structure of LISP. They may explicitly involve LISP functions like CAR and COND or LISP programming
techniques like CDR-recursion (see forthcoming discussion of POWERSET). These productions will
preserve the inherent goals which are specific to LISP and will delete the planning goals involved in domain-

general processes like structural analogy. Thus representative productions become (see Anderson, Sauers,

and Farrell, 1982):
Pl: IF the goal is to code the sccond member of a list
THEN usc CADR and set a subgoal
to code the list.
P2: IF the goal is to obtain all the elements which have

a rclation to any member of a list
THEN use MAPCONC and set as subgoals
1. Tocode a function that will return all the elements that have
a relation to the argument.
2. Tocode the list.

The programming behavior we see in GRAPES once such productions are acquired, is somewhat like the
PECOS system of Barstow (1979). As discussed in Anderson, Sauers, and Farrell (1982), the main
programming activity for the more advanced student becomes algorithm design (see Kant and Newell, 1982)

in which the task is to convert the grobiem specification inta a form that such rules can apply.

The expert programmer is advanced over the novice both in possession of rules for reformulating
problems and rules which associate large templates of code with specific problems. This is an idea that has
been suggested by a number of rcscarch'crs (Kahney & Eisenstadt, 1982; Soloway, 1780;Rich & Shrobe,
1978). Many of these rules are explicitly learned cither through formal courses or informal interaction with
other programmers. However, we suspect that many more are also compiled from experience. That is, the
programmer hits upon a problem, solves it with much scarch and effort, and compiles a rule that captures the

essence of the solution.

An Advanced Problem: POWERSET
After 30 hours of learning, subjects are beginning to solve relatively complex problems although they
arc still novices. Consider a problem that was solved by all three of our subjects (for reports of other

advanced problems sce Anderson, Farrell, and Sauers, 1982). We will describe WC's solution to this problem

as it was the most straightforward solution that we got from the subjects. In looking at this problem we will
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see a case where the student has learned all the basics and the main problem is putting these basics together.

\ As argued earlier, knowledge compilation creates a system of producltjons whose control structure mirrors the

. structure of LISP. Although WC and other subjects possessed all of the necessary tools to solve the problems

', they are given, their solutions are often riddled with working memory failures.

" The problem is called POWERSET and Figure 8 illustrates how it was presented to the subjects. The

3 subject is told that a list of atoms encodes a set of elements and he is to calculate the powerset of that set—

that is, the list of all sublists of the original list, including the original list and NIL. Each subject was given an

;. example of the POWERSE’I.' of a three element list. The three subjects we observed in detail spent from
.:. under two hours to over four hours solving this problem. In each case, they spent about one-third of their
‘: time uncovering a key insight and the other two-thirds of their time working out the LISP code that would

i capitalize on this insight.

'_ Insert Figure 8 about here :
S eeeeeeeasceaietnn {
o We have also assigned this problem to a number of programming classes and gathered inf‘ormal .
\: problem solution reports. There are two types of solutions which subjects are prone to attempt and which 1
., tend to distract them from the correct insight: .
._4 1. There is a strong tendency to try to implcmcnt' the way they would solve the problem by hand.

._ For most subjects this hand solution is one in which they calculate the null list, then all the

1' singleton lists, then all the Aoublcton lists, etc. (i.e. NIL, the (A).(B).(C), and then (A B), (B C),

. ec.) ]
- :
' 2. Some subjects are distracted by the fact that certain sublists can be achieved quite easily by taking i
,\ CDR’s. So, given the example (A B C), the sublists (B C), (C), and ( ) can be gotten by taking !
3 successive CDR’s. This leaves the difficult task of calculating the non-CDR’s, 4
- ]
i

¥ However, almost all subjects finally come up with basically the same solution. The prototypical solution {

to the problem is given in Table 3. The essential insight is illustrated in Figure 9. This involves noticing he
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relationship between the POWERSET on the full list and POWERSET on the tail (CDR) of the list In
Figure 9 we denote by X the result of POWERSET on the full list and we denote by Y the result of
POWERSET on the tail of the list. Subjects noted that Y provided half of the members they would need for
X. Sccond, they noted that the other half could be gotten from Y by adding A, the first member of the list L,
to cach member of Y. Thus, X is formed from the lists Y and Z, where Z is formed from Y by adding the first

member of L to each member of Y.

Insert Table 3 and Figure 9 about here

The decision to consider the relationship between (POWERSET L) and (POWERSET (CDR L)) is not
just a stab in the dark. It is dictated by a recursive programming technique that the students were taught
called CDR-recursion. This technique involves assuming that the function will return the correct resuit for

the CDR of the list and trying to use this result to calculate the correct answer for the whole list.

POWERSET: Simulation of WC

WC took slightly under two hours to solve the problem, of which the first half hour was spent
formulating the critical insight. His schematic protocol is given in Table 4. He spent some time trying to
formulate the solution by taking successive CDR's before he abandoned this effort. The critical point in his
protocol came when he decided to examine the relationship between the powerset of the original list and its

CDR (lincs 8 and 9 in Table 4).

Insert Table 4 about here

It would be interesting to try to simulate the process by which the subject comes to the insight about the
relationship between the powerset of the whole list and the powerset of the il of the list—ie, X = Y + zH,
This would begin to get us into issucs of algorithm design and that is beyond the scope of the current report.

However, we will focus on the programming that is involved in converting this insight into LISP code.

Figure 10 illustratcs GRAPES’ goal structure for this probiem. GRAPES keys off the fact that the

argument is a list to attempt the CDR-recursion technique. This technique involves two subgoals. One is to
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write the code for the recursive step and the other is to write the code for the terminating step which is when
the argument to POWERSET is the empty list, NIL. Under the recursive step, there are two subgoals. One is
to characterize the relationship between POWERSET of the full list and POWERSET of the tail of the list.
'- The other is to convert that characterization into LISP code. Not trying to simulate the insight X = Y + Z

we simply provide GRAPES with this information outright.

Insert Figure 10 about here

A - O

Both WC and GRAPES turn to coding Z which is formed from Y by adding 4 10 each member of Z.

Since GRAPES knows no function that will calculate such a relation, it sets out to write a new function

ADDTO that will calculate this relation. WC however, in line 10 of Table 4, first writes (UNION (CAR L)

- (POWERSET (CDR L))). UNION is a function which combines two lists and avoids repeats. This clearly

will pot give Z. It scems he has a vague specification in working memory of combining A with Y and UNION

‘ matches this specification on the basis of it being a combining function. WC knows quite weli what UNION

. does and as evidence of this, he corrects his code a couple of minutes later, and articulates what is wrong

_," without intervention of the experimenter.

| POWERSET: Coding of ADDTO

Continuing with the depth-first goa} expansion, both GRAPES and WC turn to writing the ADDTO

function before completing POWERSET. The goal structure for ADDTO is illustrated in Figure 11. The

- function is written with the same cdr-recursion technique used in POWERSET. More advanced students

might recognize this as basically a simple iterative structure and solve it with a PROG or MAP, but we are
- simulating WC at the point where he has not been taught about PROG's or MAP's and onlv knows about

recursion within LISP and not iteration.

...................

When WC first turncd to coding the recursive sicp he wrote (CONS (LIST A (CAR LYYADDTO A

(CDR L))). This differs from the correct code in that the function LIST is used rather than CONS. Rather
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' than combining A and (B C) to get (A B C), this will combine them to get (A (B C)). Once again our subject
confuses two similar functions; in this case LIST, which makes its arguments elements of a list, is confused
_ with CONS, which inserts its first argument into the list which is its second argument. This is all the more
%: interesting because this line of code also contains a correct use of CONS. It needs to be stressed that WC
- knows quite well the distinction between CONS and LIST.

Then WC turned to writing the appropriate code for the terminating condition—i.e., when ADDTO is
‘\ called with arguments A and NIL. His first thought was that he should add A to this empty list and return
‘\‘ (A). That is, he had lost sight of the fact that the second argument to ADDTO is a list of lists and he should
::’ add A to .each sublist. This is another example of the subject losing track of what it is that he had intended to
._‘ do. The subject discovered the problem with this code by mental simulation and put in the correct
':_ terminating value, namely, NIL.
At this point, the buggy definition of ADDTQO was typed into the terminal and tried it ou.t on some
= sample problems. By tracing the function, he spotted and dia.gnosed the problem caused by his use of LIST
."-;.'i rather than CONS. He changed this and the function ran correctly. WC correctes “xis probigh without
instruction from the experimenter and without looking up CONS or LIST in his text.
- POWERSET: Return to Main Function
\’ Having completed ADDTO, he then returned to writing POWERSET. His first remark in line 18
: :J indicates that he had completely forgotten the series of goals-that led to ADDTO. He had to re-read the code
he had written to reconstruct his goals.
After he reconstructed his plan for POWERSET, WC tumned to coding the terminating condition. His
& first inclination was to rcturn NIL as the value when POWERSET was called with the argument NIL. This
_ g was the only place that the experimenter intervened with some suggestions. He pointed out that the
‘: POWERSET is defined as the set of all subsets of a sct. Any set is considered a subset of itsclf and therefore
:: the set itself should be in the powerset. The experimenter explained that among the clements of the powerset

of the cmpty set should be the empty sct itsclf. From this explanation, WC inferred that the result for
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“-Z- POWERSET of NIL should be (NIL) rather than NIL. WC wrote (LIST NIL) but commented that he really

did not understand the explanation.

Then the function was typed into the terminal and WC watched it run with a trace on POWERSET.
% When he saw POWERSET return (NIL) for the value of NIL and when he saw how this result was used by
- higher levels of POWERSET, he remarked that he now understood why (NIL) was the right value for the
terminating condition. He still did not understand the cxperimenter's logical argument but he had an

understanding of why the result was essential to the correct working of the function.

4 PO

There is a close correspondence between WC and GRAPES in the overall flow of control among goals
created by the decomposition strategy. However, there are frequent failures of memory on WC's part which
are not part of the simulation. He loses track of both partial products calculated in the course of planning a
function and incorrectly retrieves functions from memory. We have observed a similar high frequency of

errors in all our novice subjects. Such errors are less frequent with advanced LISP programmers when they

i} ML
R AN -
A AR, A, 8, 4,

work on problems like POWERSET. Also, errors like the LIST-CONS confusion are almost non-existent
when subjects are asked to exccute a command at the top-level of LISP. They only appear embedded in the

context of a problem with considerable working memory load. (A recent experiment conducted on a class of

Uy F
St

60 novice programmers has confirmed that LIST-CONS confusions are more common when the function use

,. is embedded within the other functions (See Anderson, 1983b)).

Analysis of Retrieval Failures
o Working memory failures are the cause of certain problems in the protocol like forgetting why ADDTO
" was written. We think working memory failures are also responsible for the incorrect retrievals of functions
J like UNION and LIST.

o
, The following is our analysis of the LIST-CONS confusion. It is similar to what Norman (1981) catled a
description error, We assume that the subject represents as his goal
1. Tocreatea LISTL

N

2. where the first ¢lementof Lis A
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3. and where the rest of the list contains the elements of B.
This matches the specification of CONS. On the other hand, if the third clause above had contains the

L clements of replaced by simply contains, then it would match the specifications of LIST. If we assume that

= the relation containg is simpler than contains the elements of and involves a subset of its semantic features, we

‘;Z" would predict that subjccts would tend to lose the distinguishing features under heavy memory load and

L retrieve LIST instcad of CONS. Also, this analysis would predict that CONS should not be intruded instead

« 4.
a8 .
. b

of LIST. This asymmetry is clearly the case in our protocols. The asymmetry has been shown to be

LT

statistically reliable in large-scale class experiments as well 12 This analysis is also consistent with a different

CONS error that we saw in the SS protocol involving ONETWO.

The basic analysis of working memory errors being offered here is one in which the initial

- representation is fragmented into a simpler representation. This is similar to the fragmentation forgetting
theory of Jones (1976). As the azbove analysis of the LIST-CONS confusion‘illustrates, the result of such
fragmentation depends critically on one’s representation of the initial knowledge structure. Thus, one can use
: the nature of these working memory errors to make inferences about the knowledge representation such as
::-: the above analysis of the difference between CONS and LIST.

General Conclusions
While we do not have a complete theory of the behavior that occurs in the first 30 hours of
programming, we have gained some ihtcresting insights. The first has to do withyfhe basis for the
:?:; programming skill. Initially, the bchavior is guided heavily by structural analogy in which the subject uses the
structure of dcfinitions and examples to guide the programming. Later productions are compiled which ‘
directly reflect the structure of the domain. We discussed how operators become compiled to reflect the
logical structure of the basic LISP functions. In addition, the subject learns various techniques for
transforming problems into formulations that can be c.ncodcd. For instance, WC's use of the CDR-recursion

technique was critical to his solution of the POWERSET problem.

Sccond, whether the subject is using structural analogy or using domain-specific operators, the structure

S of the solution tends to be hicrarchical, top-down, and depth first. This is strong support for the architectural
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principle of goal-structured productions in the design of ACT=. Itis also consistent with the view of problem-

solving developed in Sacerdoti (1977).

Third, we have identificd the learning mechanism of knowledge compilation as critical to the transitions
underlying the learning process. We showed that GRAPES' compilation applicd to the solution of one
problem produced the improvement observed in its solution to the next problem. One of compiiations’
striking features is that it appears to occur so rapidly. We saw two examples where subjects learned from
single problem-solving episodes. Such rapid compilation has also been observed in our analysis of geometry
problem-solving(Anderson, 1982).13 Finally, we think working-memory limitations become increasingly
important as the novice learns the basics of LISP. In the term.s of Norman and Bobrow (1975) the novices
initial problem-solving is data-limited, but it rapidly becomes resource-limited and one important resource’is
working memory. Anderson (1982) argued that the major factor limiting rate of learning is working memory
capacity. Elsewhere (Anderson, 1983b) it has been argued that working memory actually increases in its
capacity to hold information about the domain, but there is nothing in our data on LISP to distinguish this

hypothesis from the idea that subjects just develop more efficient coding schemes (e.g., chunking). For other

domains, Chase and Ericsson (1983) provide fairly convincing arguments for increased working memory
- capacity.

N

‘- By the way of summary, the following is the general characterization that we would iike to give of
., learning to program in LISP. The students start out with various templates and examples and a set of facts

that guidc analogical use of these templates. With experience, analogy drops out and operators specific 10

LISP appear. Further improvement in LISP is strongly controlled by working memory capacity.
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Table 1
Schematic Protocol for BR
Writing FIRST and SECOND

1. Subject reviews template for function definition.

2. Subject reads problem.

3. Subject writes out (DEFUN FIRST".

4. Subject is confused by "parameters” in the definition template.

5. Subject reviews F-to-C and notes TEMP is the parameter.

6. Subject reviews the parameter EXCHANGE and notes PAIR is the parameter.
7. Subject decides LIST1 is the parameter for FIRST and wri'tcs (LIST1).
8. Subject looks at INCREASE.

9. Subject decides to use CAR.
10. Subject looks at EXCHANGE.
11. Subject writes (CAR (LIST1)).

12. Subject balances parenthesis. The function is:

(DEFUN FIRST (LIST1)
- (CAR (LISTD))).

13. Subject trics (FIRST ‘(B R)).
14. Subject reads error message "Error: Eval: undefined function LIST1".

15. Subject tries to insert a quote to prevent LIST1 from being treated as a function. The new
definition is:

(DEFUN FIRST (LIST1)
(CAR '(LIST1))).

16. Subject trics (FIRST (B R)) again a}ld reads the answer LISTL.

17. Subject claims not to know what to do. Tutor intercedes with a top-level example. She tvpes
(SETQ LISTL (B R)) and asks subject to get the CAR of (B R) using LIST1.

18. Subject writes (CAR LISTI).

19. Subject notes difference between what she just wrote and what she wrote in the function
definition (CAR (LIST1)). Subject decides to replace the code in the function definition by what
she has just written,
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20. Subject decides she does not need a SETQ in the function definition. Subjects definition now is:

(DEFUN FIRST (LIST1)
(CAR LISTD)).

21. Function FIRST works.

22. Subject reads specification of function SECOND.

23. Subject writes (DEFUN SECOND (LIST1).

24, Subject decides CDR will take her to the sccond element and CAR will extract it.
25. Subject reviews a previous top-level exampie, (CAR (CDR (A B C))).

26. Subject finishes function definition which is

(DEFUN SECOND (LISTI)
(CAR (CDR LIST1))).

27. Subject tests out definition on an example and it works.
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Table 2
Schematic Protocol for SS Solving ONETWO

1. Tutor suggests writing a function ONETWO that returns a list of the first two clements of the
input lists.

2. Subject reviews all of the functions that she has learned and comments that CONS seems that it
might be useful.

3. Subject is stuck.

4. Tutor intervencs to suggest writing an easier function, ADDTWO, that takes two arguments and
makes a list out of these.

5. Subject comments that this is like CONS and reviews definition of CONS.

6. Subject considers a concrete example, (ADDTWO '(A B) (C D)) = ((A B)(C D)). She considers
whether there is some way of converting (A B) and (C D) into ((A B}C D)).

7. Subject suggests trying (CONS *(A B) '(C D)) but notes that this will produce ((A B) C D).
8. Subject changes code to (CONS *(A B) '((C D))).
9. Subject starts to write function definition— (DEFUN ADDTWO (ONE TWO).

10. Subject first writes (CONS ONE TWO) but then changes this to (CONS ONE (TWO)). The
definition now is '

(DEFUN ADDTWO (ONE TWO)
(CONS ONE (TWQ))).

11. Subject tries function definition with arguments (A B) and (C D). She reccives the error message
""TWO undefined function object". '

12. Subject corrects by quoting. Function definition now is

(DEFUN ADDTWO (ONE TWO)
(CONS ONE (TWO))).

13. Subject tries new definition with argument (A B) and (C D). The result is (A B) TWO).
14. The tutor trics to explain evaluation but has no success in getting her to correct the code.
15. The tutor suggests a subproblem of getting a list containing the sccond argument.

16. Subject suggests using CONS on the argument and NIL,

17. Function definition now is

(DEFUN ADDTWO (ONETWO)
(CONS ONE (CONS TWO NIL))).

33




18. Subject tries function definition out on (A B) and (C D) and the result is ((A B) (C D)) which is
what is wanted.

19. Subject returns to the goal of writing ONETWO.
20. Subject writes (DEFUN ONETWO (LIS) (CONS (FIRST LIS).
21. Subject interrupts function definition to check what FIRST does.

22. Subject completes code. The function definition is

(DEFUN ONETWO (LIS)
(CONS (FIRST LIS) (CONS (SECOND LIS) NIL))).

23. Subject tries definition with argument (A B C) and it returns the answer (A B) which is correct.

24. Tutor asks her to redefine ONETWO using ADDTWO.

25. Subject writes .

(DEFUN ONETWO (LIS)
(ADDTWO (FIRST LIS) (SECOND LIS}))).

26. Subject tries definition with argument (A B C) and it returns the correct answer (A B).
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Table 3
Prototypical Solution to POWERSET

(DEFUN POWERSET (L)
(COND (NULL L) (LIST NIL))
(T (APPEND (POWERSET (CDR L))
(ADDTO (CAR L) (POWERSET (CDR L))

(DEFUN ADDTO (A'Y)
(COND ((NULL Y) NIL)
(T (CONS (CONS A (CAR Y))
(ADDTO A (CDR Y))))))
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Table 4 ¢

Schematic Protocol of WC on POWERSET 4

1. The experimenter explains the problem. ,"
4

2. The subject recognizes that there are 2" sets in the solution where n is the length of the list ji
3. The subject thinks about "takmg the first elecment off of the list and calling this funcuon on the .
rest of the list" because that is "the general thing | have been doing lately with recursion.” g

e

4. Subject switches attention to calculating all the cdrs of the list

5. Subject now suggests a loop in which he successively takes all the powersets of successive sublists
of the original list— "For every list I pull off an element and do powerset of the cdr.”

6. Experimenter suggests the method will not work.

et )

7. Subject focuses on powerset of (A B C D) and decides his method would "miss the sets with A in
‘L’l

8. Subject figures out the powerset of (B C D) and notes "All that I am missing is the union of A
with all these things."”

9. Subject states his plan "] have the powerset of (B C D) and I want to UNION that with something
clse which is A added to the powerset.”

10. Subject writes

(UNION (POWERSET (CDR X))
(UNION (CAR X) (POWERSET (CDR X)))).

11. Subject decides the embedded UNION will not work and decides to write a helping function
called ADDTO wuh arguments A and L.

12. Subject decides he will add A to each member of L by CONS.

13. Subject decides when L is NIL he will add A to NIL to get (A). Then he changes his mind and
decides NIL is the correct answer in this case.

14. Subject writes ' :
(DEFUN ADDTO (X L) :
(COND ((NOT L) NIL)
(T{(CONS (LIST X (CARL))
(ADDTO X (CDR L)))).
15. Subject tries function (ADDTO ‘A '((B C) ((D) (A B C D E)))) and traces.
16. Inspecting trace he decides he should replace LIST by CONS.

17. Corrected function runs correctly.




A
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18. Subject comments “"Now [ have forgotten where I was in this thing.” He reviews what he had
writien about POWERSET.

19. Subject writes

(DEFUN POWERSET (L)
(COND (NOTL)
(T (UNION (POWERSET (CDR L))
(ADDTO (CAR L) (FOWERSET (CDR L)))))).

20. Turns to case when L is NIL and comments " think I want to recurn NIL."
21. Types in (POWERSET (A B)) and traces. He focuses on why POWERSET of (B) did not work.
22. Subject decides that problem is in ADDTO and he should correct it so ADDTO (B NIL) = (B).

23. Tutor tells subject to work on POWERSET and explains that the POWERSET of the empty set is
a set thz. contains the cmpty set.

24. Subject corrects POWERSET so it no.w reads

(DEFUN POWERSET (L)
(COND ((NOT L) (LIST NIL))
(T (UNION (POWERSET (CDR L))
(ADDTO (CAR L) (POWERSET (CDR L)))).

but comments he docs not understand the terminating condition.
25. The subject tries the function in an example with a trace.
26. The subject comments on the trace “Oh, I think I understand it now. It was returning NIL rather

than a list with NIL in it..Well I think I understand why this didn't work that time. [ still don’t
understand the way veu think about it. But I think the way I think about it is OK t00.”
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Figure Captions
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Figure 1 A representation of the goal structure in subject BR's solution to the problem of writing the

. function FIRST. The boxes represent goals and the arrows indicate that a production has g
decomposed the goal above into the subgoals below. Checks indicate successful goals and
X's indicate failed goals. The dotted lines indicate parts of the goal trce combined in ) _.
»

composition — see text for discussion. §

Figure 2 The goal structure at the beginning of the ADDTWO protocol where the subject makes up E

J

u? an example. )
Figure 3 The goal structure for the portion of the protocol where the subject decides how to create a 1
- | 1
- top-level function call that will be analogous to her desired program. The protocol starts ;J‘

with the goal, CODE EXAMPLE, and ends with successful mental simulation of CONS in

order to check the code.
, Figure 4 The goal structure governing the initial coding of ADDTWOQ. This starts at the goal, MAP
J TO ABSTRACT, and involves mapping the goal structure already built under CODE

EXAMPLE 1o the definition.

Figure § The goal structure governing the testing and repair of the ADDTWO function. The

i structure under CHECK CODE is being generated to repair the code generated initally

PR T TP

under MAP TO ABSTRACT.
. Figure 6 The goal structure governing the episode in ADDTWO where the subject decides how to
: put an clement into a list.
’ Figure 7 The goal structure governing the coding of ONETWO after the successful coding of
- ADDTWO.

Figurc 8 A specification of the POWERSET problem as presented to subjects.
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Figure 9

. Figure 10

Figure 11
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A representation of the essential insight which underlies solution of the POWERSET

problem.

A representation of the hierarchical goal structure controlling GRAPES® solution of the

POWERSET problem.

A representation of the hicrarchical goal structure controlling GRAPES' solution of the

ADDTO problem. This structure is a substructure of the goal structure in Figure 11.
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L=(A BC)

- X=(POWERSET L)

= ((ABC)
(A B)
(A C)
(A)

- (B C)
(B)
(C)
9)

X=Y+Z WHERE

Z ISFORMED FROM Y BY ADDING A TOEACH

MEMBER OF Y.

Y = (POWERSET (CDR L))
= ((B C)
(B)
(C)
()

Z=((ABC)
(A B)
(A C)
(A))
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Appendix A
R: This is the 6th session and this is February 8th. And we start by doing some problems. Do you want

to review?

B: Yes, let me look through what we've done. Ok, we did setting functions, setting them up. Ok, you
type DEFUN and then the function name, and then what the parameters will be and then the process. Ok,
I'm just looking over the example for the temperature [?]...Then to exchange the lists. I think ! know these.

We'll see.

R: Ok, for the first one, why don’t you read the problem, and then we'll do a slightly different--a subset

of the first problem.

B: [B reads the problem 3-1 on page 37.]

R: Why don’t we just define FIRST.

e il 4

B: Ok, we start out by typing or writing DEFUN, and then the name, which would te FIRST. [long

pa:.] 'm confused as to what the paramcters would be,

R: You just have no ideas or you're choosing between several possibilities?

WPIPS - PRSI

B: Idon’t know what to call--what--let me look at this again.

s’

R: Ok, you're looking at? !‘
B: At the temperature one. Ok, "when F-TO-C is used. it appears as the first clement in a two clement .

-

list. The sccond clement is F-TO-C's argument. After the argument is evaluated, it becomes the temporary

value of the functica parameter. In this case, TEMP is the parameter, and it is given the value of the

FEPTTEY

argument while F-TO-C is being cvaluated.” [From page 34.] Ok. that's no help. Ok. now I'm looking at the

P .
Py

once about the pairs. [from problem 3-1] “Define new functions FIRST, REST, and INSERT that do the same

things.” Ok, in this they want {?]




R: But this is ours.

B: [from page 35) "This new function exchanges the first and second clements of a two-element list." N
Ok, so the function is called EXCHANGE. The parameter is PAIR, meaning two clements in the list. Ok, it

makes a list out of those two [?). Ok, DEFUN FIRST is what we want to call it, right?
R: Maybe I'll ask you, how many parameters do you think you'll nced?
B: Just one, the first clement of the list.
R: That's what the parameter is?
B: Or the list, I'm sorry.

R: Ok, the list And what is the first clement of the list--what relationship does that have to the

function?
B: That's what you want to end up with.
R: Ok, that's called the value, the answer--what you end up with--in LISP is generally called the value.

B: Ok, so the parameter would be the list?

R: Yes.
B: Ok, so you type LIST [B has written (DEFUN FIRST (LIST) 1
R: Ok, well let me tell you somcething right now. That's a perfectly lezitimate thing to do--to call a i
)
parameter "LIST'--but becausc it has the same name as a function, it can make certain types of errors-- you'll %
1
never catch your crror in a year because LISP will keep trying 1o mube a list out of things, and so it's ]
A
probably--LIS or LIS] or somcthing that's going to be a better name to call just to keep vourself from having )
£
con- fusion. Butif you did everything right. it weuld be perfectly legitimate. .
1
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B: Maybe I could justcall it LIST1.

R: Yes, that shouldn't cause anything, so L-1-S-T-1.
B: Ok.

R: Now where are you looking?

B: I was looking back over here.

R: Ok, the example INCREASE.

B: Ok, we want it to take the first elément. We want it to do the same thing as CAR but it's going to be
called somcthing different. Can you use the function CAR? I'm not supposed to ask questions. Ok. Uh, ok,

let me try this. Uh, let me look at this one again.
R: Ok, the EXCHANGE cxample.
B: Could it just be CAR and then LIST1?
R: Wecan try that.

B: Ok, we have the function itself, what it's going to be called. the parameter, what it’s going to do. [B

balances parentheses.)
R: Maybe we should try typing.that in.
B: But I'm--there’s nothing specific here so it wouldn’t--I don’t know... .
R: I'm not--can you try and express it...

B: Ok, back here it just is the general definition of the function and it should return FIRST. I think,

And then if we used a concrete example...

—d b eaa
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-:'_"- R: Why don’t you right now give me an example--a concrete example we might type in after the

function.
B: Ok, [B writes (FIRST (B R))] And it should return B.
[R types in the function definition: (DEFUN FIRST (LIST1) (CAR (LIST1))
B: Three closed parens.

':' R: Oh, sorry. [R adds a closed paren at the end.] And it says FIRST. Ok, now we’re going to try
e FIRST of BR [(FIRST (B R))] ERROR: EVAL: undefined function B.

B: Ah, it should have a quote.

R: Ok, quote before the list. All right, FIRST QUOTE B R.[R types (FIRST (B R)).] Ok, ERROR:
':.::: EVAL: undecfined function LISTL.

o B: Maybe there should be a quote up here.

R: Ok. do you want to try that? That's now between the CAR and LIST1 is where you want to put the

quote. Uh, maybe I'd like to ask you to tell me a little bit more about why you chose that.

B: Let me think about where the [?). When I had just this without the quote, it saw B as just a function
and this as its argument. [7] So then 1 put a quote here, and so that--and then it said that LIST1 wasa't

recognized, right?
R: Itsaid undefined function LIST1. LISTI wasn't recognized as a function.
B: Uh, do you want to know why it doesn’t?

R: Well, no, not necessarily. I want to know why you decided that quote would solve the problem.

-
¢
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B: Because a quote keeps whatever's after it from being looked at as a function.
_‘ R: All right, let’s try sceing [?] quote. [R does some manipulations to make the change in the definition

of the function to: (DEFUN FIRST (LIST1) (CAR *(LIST1))).] Ok, now we go back to FIRST of BR...Ok, it

gave LIST1 as its answer.
B: Itgave LIST1 as its answer. Hmm...interesting.
-k ]
o R: 1presume that is not what you thought the answer was going to be. ]
? |
:’x' B: Ok, up here I have CAR of the QUOTE and then some list. Uh...[long pausc] [?] the list..I don’t :
N know what to do. :
-‘ a
R: Ok, let me try [7] this way. Suppose we had typed in open paren CAR of QUOTE paren LIST1
closed paren closed paren [(CAR '(LIST1))], what would you expect to get as an answer to that?
- B: Paren LISTL. ‘
R R: Should we try that? [R types it in.] :
A 1
- B: Orclse just LISTL. ‘
R: Ok, which one do you want to predict? ]
- 3
" B: Uh, probably without the parentheses. T
- R: Ok, do you want to check it and f?]

s
s it

B: Ok, I'm looking at page 23. Ok if you take the CAR of L you get A. Take the CAR of QUOTE L--

)
ad o

QUOTE L means an L {7} I gucss it would still be in parentheses--the list [?]

2 R: Ok, but what's the answer to this minor function [?]--what the CAR of QUOTE open paren LIST1

ndendie et ot chadededad A e
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closed paren?
B: For this--I'm trying to think if it would have the parentheses or not. I don’t think so.

R: Ok, so you think it’s just LIST1 without the parcntheses. Ok, does that give you any better

understanding...
B: It has the parentheses or it doesn't?
R: It does not have parentheses.

B: So it actually rcturns LISTL. Ok, so here it returns LIST1. I don’t--it’s like it's not recognizing this

at all,

R: It's not recognizing B. Let's try [?] that table here. Now this is going to have to be a little different
because of F-TO-C--this is Figure 3-1. page 35--you're going to have FIRST, and instecad of TEMP you're

going to have--what's cquivalent to what was TEMP in F-TO-C?

B: LISTI1.

R: Ok, those are the only two things. Can we Lry doing the equivalent.
B: Ok, so you type in the function.

R: Ok, so you type in the function FIRST then BR.

B: Record current value of LIST1 if any. There isn’t.

R: There is none. Ok.

t B: Sothen you set LIST1 to B R. So LISTI has the value BR. Use EVAL on body of F-TO--FiRST.

Ll
it

{’ R: Ok, now what would happen if we did EVAL on open paren CAR of QUOTE open paren LIST]




closed paren closed paren? What would you get as the answer?

B: LISTl'without the parentheses.

R: Ok, all right. And that's cxactly what happened. There were two more steps: Restore TEMP's
value and Return value found to EVAL. Ok, docs that help you understand why you got the wrong answer.,

It may not help you understand how you get the right answer, but does that help you understand why you got

the wrong answer?
B: Yes, I think so. Istill don’t know how to get the right answer.

R: Let's assume that | had said to you 'Ok, we had just done SETQ LIST1 to QUOTE LIST B

R.{(SETQ LIST1 ’(B R))]. Now, how would you write the function to get the CAR of that, given that I just
sct LIST1 1o...

B: You want me to do what?
R: Totake the CAR.
B: Of this whole thing?

R: No, I want you to get the CAR of B R, given that it's been assigned to LIST1--that is, I don’t want

you to do it dircctly using B R, I want you to do it using LIST1.

B: Ok, so you've--you’ve alrcady--you've set LIST1 equal to B R. Then it would be CAR...are we doing

this like--assuming this is what would be up here? You want to know how I would get...

R: No, we're just doing it totally independently. I'm just saying {?] Just like with an cxercise before,

remember we had to get PEAR out of [?7) Get B out of LISTL. Yes, it's cquivalent to that one.

B: Ok, so...at this point, LIST1 has the value BR.
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R: You wrote down CAR... _
['I' B: CAR LIST], I guess. Wait. I'm looking back [?] ,J

Id
PRV

R: Ok, you wrote CAR open paren LIST1 closed paren closed paren.

B: Ok, herc we sct L--we used quotes there, we didn't use QUOTE here.

R: That’s because we did SETQ.

B: We set L to the list A B, and we've set the LIST1 to the list A B--the list B R. Ok, then we did the

CAR of L there and they got A out. So 1 think that might work.

R: Do you see a differcnce between what you've written and what they’ve written?

B: Yes. 1 have parentheses.

R: Ok, do you think that will make a difference?

B: Yes, it would probably just bring back LIST1. So I would want it to be CAR LISTL. [(CAR LIST1)]

et e dn etk

R: Ok, let'stry it. (R typesin the SETQ function and the CAR function.] And vou get B back. So does

that...now...

B: So this is the correct one to get B?

Y ~ PO W

R: Ok, from--assuming that the list B R had been set to LIST1. Now does that give vou any ideas of

how you might want to modify your dcfinition of FIRéT’? i

. g

B: Ok, I was looking at this while you were typing.

R: Ok, you were looking at [?7) F-TO-C.

SR UINIrWY » I NS
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B: F-TO-C, wherc they SETQ TEMP and they did something else with it.

R: You think that's going to help?

B: Maybe not.

R: Ifitis, that's what [ want to know--why?

B: No, maybe not.

R: Ididn't mean to imply [7]

B: No, actually what they're doing I guess is setting the temperature to the difference between the
temperature and 32, and that's not quite what we want to do. Ok, this was the way-- after we had sct LIST1 to
B R, and then we did CAR of LIST], we got B. If we had had just CAR and LIST1 up here...and then just

typed in FIRST and parentheses B R--I'm not sure if I need to use SETQ in the deﬁnitipn.
R: Ok, do you remember where tﬁc idea of doing the. SETQ came from?
B: What do you mean? Where in the book?
R: In the book in the sense of we were talking about this figure, 3-1.
B: Oh, ok. So that's sort of inhcrent in the function.
R: Yes.[7]

B: Ok, so I don't have to do that. Ok, so let's try this. [B writes: (DEFUN FIRST (LIST1) (CAR

LIST1)). and R types it in to the computer.]

R: And now you want mc to do FIRST of QUOTE BR.

B: Well, I didn't put a quote in.
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- R: Oh, you don't want to put a quote in?

w——d

B: I'm not sure, since you put it in. : ] [ }

3

R: Iwas just copying it from here. Which would you like to do? Ok, so you want to do it--do you want -]

to try it without the quote? ' -
b,

B: Without the quote, it would probably do the same thing as before. f'

' ]
R: Which was? ;‘J

B: It would look at thisas a function:
R: Oh,B[7 é
B: So it should have a quote. .
R: Ok, and it comes back with B. Ok, do you want to try it on anything else? ’ u
B: No. . mean--I assume it’s the same--any kind of list would do that.

R: Ok, let's do as a second thing, let's try to define a function called SECOND that--is it clear what

SECOND would do?

B: Yes. Ok, DEFUN SECOND, the parameter would be LIST1--can I still call it that?
4 R: Yes.

B: Ok, I'm just going to make up a list--assume you have the list X Y and Z-- And you want to get the

Y out.

R: What are those funny marks between the letters?
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B: Commas. They're not supposed to be there, right?
R: Tjust couldn't figure out what they were. Not in general.

B: Ok, and you want to get Y, so you'd want to take the CDR of this to end up with Y and Z, and then
take the CAR and end up with Y. So, you'd have CDR of the LIST], and out here you'd have your CAR.
Ok, I want to look back to where we did multiple CDRs and CARS. Let’s see...ok, I'm looking on page 20.
Ok, CAR CDR and then QUOTE and then alist. B is what's returned. [at the bottom of page 21.] Ok, that’s
what [ want it to do. [B starts reading the next-to-the-last paragraph on page 21.] Ok, I want it to do CDR.
So 1 think...]I think I just want it like that. [the function is: (DEFUN SECOND (LIST1) (CAR (CDR
LIST1)))] I'l write an example.

[R has problems getting the computer to work properly.]

R: So, it looks like SECOND is okay. I won't bother to explain to you how I know.
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2A1 programs in LISP take the form of functions that calculate a particular input-out relation.

*Here and throughout the paper we will give English-like rendition of the production rules. A technical
specification of these rules (i.e., a computer listing) can be obtained by writing to us. Also available is a users’

manual (Sauers & Farrell, 1982) that describes the system.

“The LISP function CPR returns all of a list except its first member, i.e. (CDR (A BC))=(B C).

3In LISP, functions can be directly typed into the monitor and directly applied or they can be part of

e e w v 4
R PR

function definitions, in which case they are applied only when the function is cvaluated.

0
T

6Many have commented that they felt it was unintuitive to claim that procedures could be created from

. ‘.‘- “A * .:_

a single problem-solving cpisode. Their intuition is that it should take much longer to proceduralize

l“l

2 4
)

knowledge. Rather, they suspect that the subject is using various declarative traces to guide the solution of

the sccond problem. There is no hard evidence in the protocols. on this matter. However, the one-trial

) .."

calculus text). This is that they find the second problem much casier and they have no idea why. This lack of

introspective awareness of the cause of the improvement is to be predicted from the procedural position.

"This essentially involved breaking in on the simulation and changing working memory—i.e., we have

no real theory of why this working memory crror occurred, only what its consequences were,

y
:: 8Given the more advanced stage of SS, the function syntax, parcnthesis balancing, ctc. are all parts of

compiled productions —unlike the previous simulation of BR.

‘-"A.‘;A‘_‘.‘g_"._‘)_.'.a_r_'~_l“' R Y]
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learning position is consistent with a frequent report students’ give in solving a series of problems (e.g., in
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Note that she has made the same error as BR in placing an argument in parentheses but for very
different reasons. SS follows the error message with the same repair as used by BR. Her comment at the
point of the error message is “Must have something to do with when we defined that and I put parentheses

around rwo. Cause there's no /wo in there, let’s sce...Maybe I should have...what would it do if [ quoted that?"

0gecause of GRAPES specificity conflict resolution principle, more specific rules, like MAP-FIND,

will apply before less specific, default rules like the rule applied here.

1 And in fact, Peter Pirolli at Camnegie-Mellon University has written a GRAPES simulation of how this

insight is uncovered

12Unf‘ormnately. this asymmetry is confounded with the fact that "LIST" is more mnemonic as a
function name than CONS. However, we have also done an cxperiment that reversed the function names and

still found the effect—i.e., now "CONS" is better than "LIST" (See Anderson, 1983b).

1Anderson (1982) argues for a process of tuning in addition to knowledge compilation. This is a
mechanism by which operators, once compiled, become more appropriate in their range of application. For
instance, there are many places where CDR-recursion could be tried. On only some of these would it be

appropriate, We sce very little of this tuning in our protocols, perhaps because we are only looking at the first

30 hours of learning.
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Marine Corps

H. William Greenup
Education Advisor (EO031)
Education Centar, MCDEC
Quantico, VA 22134

Special Assistant for Marine
Corps Matters

Code 100M

Office of Naval Research

800 N. Quincy St.

Arlington, VA 22217

DR. A.L. SLAFKOSKY

SCIENTIFIC ADVISOR (CODE RD-1)
HQ, U.S. MARINE CORPS
WASHINGTON, DC 20380
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Army

Technical Director

U. S. Army Research Institute for the
Behavioral and Social Sciences

5001 Eisenhower Avenue

Alexandria, VA 22333

Mr. James Baker

Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Milton S. Katz

Training Technical Area

U.S. Army Research Institute
5001 Eisenhowar Avenue
Alexandria, VA 22333

Dr. Marshall Narva

US Army Research Institute for the
Behavioral & Social Sciences

5001 Eisenhower Avenue

Alexaadria, VA 22333

Dr. Harold F. 0'Neil, Jr.
Director, Training Research Lab
Army Research Institute

5001 Eisenhower Avenue
Alexandria, VA 22333

Commander, U.S. Army Research Institute
for the Behavioral & Social Sciences

ATTN: PERI-BR (Dr. Judith Orasanu)

5001 Eisenhower Avenue

Alexandria, VA 20333

Joseph Psotka, Ph.D.
ATTN: PERI-IC

Army Research Institute
5001 Eisenhower Ave.
Alexandria, VA 22333

Dr. Robert Sasmor

U. S. Army Research Institute for the
Behavioral and Social Sciences

5001 Eisenhower Avenue

Alexandria, VA 221333

Dr. Robert Wisher

Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333
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Air Force Human Resources Laboratory

WPAFB, OH 45433

U.S. Air Force Office of Scientific

Research
Life Sciences Directorate,
Bolling Air Force Base
Washington, DC 20332

Air University Library
AUL/LSE 76/443
Maxwell AFB, AL 36112

Dr. Earl A. Alluisi
HQ, AFHRL (AFSC)
Brooks AFB, TX 78235

Mr. Raymond E. Christal
AFHRL/MOE
Brooks AFB, TX 78235

Bryan Dallman
AFHRL/LRT
Lowry AFB, CO 80230

Dr. Alfred R. Fregly
AFOSR/NL
Bolling AFB, DC 20332

Dr. Genevieve Haddad
Program Manager

Life Sciences Directorate
AFOSR

Bolling AFB, DC 20332

Dr. T. M. Longridge
AFHRL/OTE
Williams AFB, AZ 85224

Dr. John Tangney
AFOSR/NL
Bolling AFB, DC 20332

Dr. Joseph Yasatuke
AFHRL/LRT
Lowry AFB, CO 80230

NL

Departme ¢ of Defense

Defense Technical Information Center
Cameron Station, Bldg 5

Alexandria, VA 22314

Attn: TC

1 Military Assistant for Training and

Personnel Technology

Office of the Under Secretary of Defans
for Research & Engineering

Room 3D129, The Pentagon

Washington, DC 20301

Major Jack Thorpe
DARPA

1400 Wilson Blvd.
Arlington, VA 22209
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Civilian Agencies

Dr. Patricia A. Butler
NIE-BRN Bldg, Stop # 7
1200 19th St., NW
Washington, DC 20208

Dr. Susan Chipman

Learning and Development
National Institute of Education
1200 19th Street NW

Washington, DC 20208

Edward Esty

Department of Education, OERI
MS 40

1200 19th St., NW

Washington, DC 20208

Dr. John Mays

National Institute of Education
1200 19th Street NW

Washington, DC 20208

Dr. Arthur Melmed

724 Brown

U. S. Dept. of Education
Washington, DC 20208

Dr. Andrew R. Molnar

Office of Scientific and Engineering
Personnel and Education

National Science Fouadation

Washington, DC 20550

Chief, Psychological Reserch Branch
U. S. Coast Guard (G-P-1/2/TP42)
Washington, DC 20593

Dr. Frank Withrow

U. S. Office of Education
400 Maryland Ave. SW
Washington, DC 20202

Dr. Joseph L. Young, Director
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550
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Private Sector

Dr. Patricia Baggett
Department of Psychology
University of Colorado
Boulder, CO 80309

Mr. Avron Barr

Department of Computer Science
Stanford University

Stanford, CA 94305

Dr. John Black

Yale University

Box 11A, Yale Station
New Haven, CT 06520

Dr. John S. Brown

XEROX Palo Alto Reszarch Center
3333 Coyote Road

Palo Alto, CA 94304

Dr. Glenn Bryan
5208 Poe Road
Bethesda, MD 20817

Dr. Bruce Buchanan

Department of Computer Science
Stanford University

Stanford, CA 94305

Dr. Jaime Carbonell
Carnegie-Mellon University
Department of Psychology
Pictsburgh, PA 15213

Dr. Pat Carpenter
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

Dr. William Chase
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213

Dr. Micheline Chi
Learning R & D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

Dr. William Clancey

Department of Computer Science
Stanford University

Stanford, CA 94306
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Private Sector

Dr. Michael Cole

University of California
at San Diego

Laboratory of Comparative
Human Cognition - DOQ3A

La Jolla, CA 92093

Dr. Allan M, Collins

Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02138

Dr. Lynn A. Cooper

LRDC

University of Pittsburgh
3939 0'Hara Street
Pittsburgh, PA 15213

Dr. Paul Feltovich

Department of Medical Education
Southern Illinois University
School of Medicine

P.0. Box 3926

Springfield, IL 62708

Professor Reuven Feuerstein
HWCRI Rehov Karmon 6

Bet Hakerem

Jerusalem

Israel

Mr. Wallace Feurzeig

Department of Educational Technology
Bolt Beranek & Newman

10 Moulton St.

Cambridge, MA 02238

Dr. Dexter Fletcher
WICAT Research Institute
1875 S. State St.

Orem, UT 22333

Dr. John R. Frederiksen
Bolt Beranek & Newman
50 Moulton Street
Cambridge, MA 02138

Dr. Michael Genesereth
Department of Computer Science
Stanford University

Stanford, CA 94305

Page 6
Private Sector

Dr. Don Gentner

Center for Human Information Processing
University of California, San Diego

La Jolla, CA 92093

Dr. Dedre Gentner
Bolt Beranek & Newman
10 Moulton St.
Cambridge, MA 02138

Dr. Robert Glaser

Learning Research & Development Center
University of Pittsburgh

3939 O'Hara Street

PITTSBURGH, PA 15260

Dr. Josph Goguen

SRI International -
333 Ravenswood Avenue
Menlo Park, CA 94025

Dr. Daniel Gopher
Department of Psychology
University of Illinois
Champaign, IL 61320

Dr. Bert Green .
Johns Hopkins University
Department of Psychology
Charles & 34th Street
Baltimore, MD 21213

DR. JAMES G. GREENO

LRDC

UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213

Dr. Barbara Hayes-Roth
Department of Computer Science
Stanford University

Stanford, CA 95305

Dr. Frederick Hayes-Roth
Teknowledge

525 University Ave,

Palo Alto, CA 94301

Dr. Earl Humt

Dept. of Psychology
University of Washington
Seattle, WA 98105
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Private Sector

Dr. Marcel Just

Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

Dr. Scott Kelso

Haskins Laboratories, Inc
270 Crown Street

New Haven, CT 06510

Dr. David Kieras
Department of Psychology
University of Arizona
Tuscon, AZ 85721

Dr. Walter Kintsch
Department of Psychology
University of Colorado -
Boulder, CO 80302

Dr. Stephen Kosslyn
1236 William James Hall
33 Kirkland St.
Cambridge, MA 02138

Dr. Pat Langley

The Robotics Institute
Carnegie-Mellon University
Pittsburgh, PA 15213

Dr. Jill Larkin

Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213

Dr. Alan Lesgold
Learning R&D Center
University of Pittsburgh
3939 (O'Hara Street
Pittsburgh, PA 15260

Dr. Jim Levin

University of California
at San Diego

Laboratory fof Comparative
Human Cognition - DO0O03A

La Jolla, CA 92093

Dr. Michael Levine

Department of Educational Psychology
210 Education Bldg.

University of Illinois

Champaign, IL 61801

26-Jul-83

Private Sector

Dr. Marcia C., Linn
Lawrence Hall of Science
University of California
Berkelay, CA 94720

Dr. Jay McClelland
Department of Psychology
MIT

Cambridge, MA 02139

Dr. James R. Miller
Computer*Thought Corporation
1721 West Plano Highway
Plano, TX 75075

Dr. Mark Miller
Computer*Thought Corporation
1721 West Plano Parkway
Plano, TX 75075

Dr. Tom Moran

Xerox PARC

3333 Coyote Hill Road
Palo Alto, CA 94304

Dr. Allen Munro

Behavioral Technology Laboratories
1845 Elena Ave., Fourth Floor
Redondo Beach, CA 90277

Dr. Donald A Norman

Cognitive Science, C-015

Univ. of California, San Diego
La Jolla, CA 92093

Dr. Jesse Orlaunsky

Institute for Defense Analyses
1301 N. Beauragard St.
Alexandria, VA 22311

Prof. Seymour Papert

20C-109

Massachusetts Institute of Technology
Cambridge, MA 02139

Dr. Nancy Pennington
University of Chicago
Graduate School of Business
1101 E. 58th St.

Chicago, IL 60637
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Private Sector

DR. PETER POLSON

DEPT. OF PSYCHOLOGY
UNIVERSITY OF COLORADO
BOULDER, CO 80309

Dr. Fred Reif

Physics Department
University of California
Berkeley, CA 94720

Dr. Lauren Resnick

LRDC

University of Pittsburgh
3939 0'Hara Street
Pittsburgh, PA 1521

Mary S. Riley

Program in Cognitive Scienca

Center for Human Information Processing
University of California, San Diego

La Jolla, CA 92093

Dr. Andrew M. Rose

American Institutes for Research
1055 Thomas Jefferson St. NW
Washington, DC 20007

Dr. Ernst Z. Rothkopf
Bell Laboratories
Murray Hill, NJ Q7974

Dr. William B. Rouse

Georgia Institute of Technology

School of Industrial & Systems
Engineering

Atlanta, GA 30332

Dr. David Rumelhart

Center for Human Information Processing
Univ. of California, San Diego

La Jolla, CA 92093

Dr. Michael J. Samet
Parceptronics, Inc

6271 Variel Avenue
Woodland Hills, CA 91364

Dr. Roger Schank

Yale University

Department of Computer Science
P.0. Box 2158

New Haven, CT 06520
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Private Sector

1 Dr. Walter Schneider
Psychology Department
603 E. Daniel
Champaign, IL 51820

1 Dr. Alan Schoenfeld
Mathematics and Education
The University of Rochester
Rochester, NY 14627

1 Mr. Colin Sheppard
Applied Psychology Unit
Admiralty Marine Techmology Est.
Teddington, Middlesex
United Kingdom

1 Dr. H. Wallace Sinaiko
Program Director
Manpower Research and Advisory Services
Smithsonian Institution
801 North Pitt Street
Alexandria, VA 22314

] Dr. Edward E. Smith
Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02138

1 Dr. Richard Snow
School of Education
Stanford University
Stanford, CA 94305

l Dr. Eliott Soloway

"Yale University
Department of Computer Science
P.O. Box 2158
New Haven, CT 06520

1 Dr. Kathryn T. Spoehr
Psychology Department
Brown University
Providence, RI 02912

1 Dr. Robert Sternberg
Dept. of Psychology
Yale University
Box 11A, Yala Station
New Haven, CT 06520

1 Dr. Albert Stevens
Bolt Beranek & Newman, Inc.
10 Moulton St.
Cambridge, MA 02238
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: Private Sector

1 David E. Stone, Ph.D.
Hazeltine Corporation
7680 0ld Springhouse Road
McLean, VA 22102

1 DR. PATRICK SUPPES
INSTITUTE FOR MATHEMATICAL STUDIES IN
THE SOCIAL SCIENCES
STANFORD UNIVERSITY

A STANFORD, CA 94305
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1 Dr. Kikumi Tatsuoka
Computer Based Education Research Lab
252 Engineering Research Laboratory
Urbana, IL 61801

i a1

1 Dr. Maurice Tatsuoka
220 Education Bldg
1310 S. Sixth st.
Champaign, IL 61820

Free

1 Dr. Perry W. Thorndyke
Perceptronics, Inc.
545 Middlefield Road, Suite 140
Menlo Park, CA 94025

1 Dr. Douglas Towme
Univ. of So. California
Behavioral Technology Labs
1845 S. Elena Ave.
Redondo Beach, CA 90277

e

1 Dr. Kurt Van Lehn
Xerox PARC
3333 Coyota Hill Road
Palo Alto, CA 94304

1 Dr. Keith T. Wescourt
Perceptronics, Inc.
545 Middlefield Road, Suite 140
Menlo Park, CA 94025

1 Dr. Thomas Wickens
Perceptronics, Inc.
6271 Variel Ave.
Woodland Hills, CA 91364

1 Dr. Mike Williams
Xerox PARC
3333 Coyote Hill Road
Palo Alto, CA 94304
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